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ABSTRACT: In the last years, wireless sensor networks have emerged as a promising 
technology that is inducing a deep innovation in the field of structural monitoring. The main 
advantages of wireless sensor networks are fast deployment, little interference and self-
organization. However, since wireless sensor nodes are battery powered, in long term 
monitoring applications the power management influences significantly the operation of a 
wireless sensor network. In data intensive applications, e.g. vibration based monitoring, low 
power hardware, duty cycle operation and efficient communication policies are not sufficient 
for achieving a sustainable system lifetime. Since data communication is the most energy 
consuming task, long system lifetimes can only be achieved by a significant data reduction in 
the nodes. This data reduction is a challenging task, since it has to be performed with very 
limited computational and memory resources and in competition with tasks providing the basic 
network functionality. The objective of the paper is to provide a brief overview of the wireless 
sensor network technology and to present our experience over the past three years with data 
intensive structural monitoring using wireless sensor networks. Deployments on two bridges are 
illustrated and specific aspects of sensing, data quality, stability, availability, and system 
lifetime are analyzed. 

1 WIRELESS SENSOR NETWORKS 

1.1 Introduction 

A wireless sensor network (WSN) is a computer network consisting of many small, 
intercommunicating computers equipped with one or several sensors (Culler & Wei 2004). Each 
small computer represents a node of the network and is commonly called sensor node. The 
communication within the network is established using radio frequency transmission. All sensor 
nodes are equipped with specific sensors tailored to their measurement tasks. One or several 
sensor nodes act as root nodes and represent the data sink in the network.  

The typical hardware components of a sensor node are the sensors, a signal conditioning unit, an 
analog to digital conversion (ADC) module, a central processing unit (CPU) with random access 
memory (RAM), a radio transceiver and the power supply (see Figure 1a). A physical 
implementation of a sensor node is displayed in Figure 1b. Various hardware wireless sensor 
networks platforms are commercially available today, which offer the basic functionality 
together with specific sensing capabilities (Bischoff et al. 2009). The diversity of platforms 
offers the possibility to choose a platform which best fits the needs of a specific application. 
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Contrary to conventional monitoring systems, which usually have a centralized system 
configuration and data acquisition software, a WSN is a distributed data acquisition system. 
Each sensor node executes software that provides the functionality for performing many tasks: 

– scheduling and execution of the measurement tasks 
– signal conditioning and data acquisition for different sensors 
– temporary storage of the acquired data 
– data processing 
– self monitoring (e.g. supply voltage, communication link quality) 
– time synchronization of the network 
– management of the data acquisition and processing configuration (e.g. changing the 

sampling rate, reprogramming of data processing algorithms) 
– reception and forwarding of data packets 
– coordination and management of communication and networking. 

The sensor node software of a WSN for civil structures that supports different sensors and data 
processing algorithms is described in Feltrin et al. 2010. Because of the very limited memory 
resources, the software is usually tailored to the specific sensors and tasks of a sensor node in 
order to keep its size as small as possible. Often, the software is written in NesC (Gay et al. 
2003), an extension to the C language. The basic functionality like time synchronization, multi-
hop functionality etc. is provided by TinyOS (Levis et al. 2005), a widespread operating system 
for WSNs that has been ported to many WSN platforms. TinyOS is highly tailored to the limited 
resources of the node hardware. NesC as well as TinyOS are both Open Source projects 
(www.tinyOS.net). 

1.2 Power management 

Since the sensor nodes have to be operated with batteries, the power supply is very limited. 
Power saving is therefore of outmost importance in designing, implementing and operating 
WSN based monitoring systems for medium and long term deployments, since too frequent 
battery changes increase the maintenance costs severely compromising one of the main 
advantages of WSN monitoring systems.  

Energy consumption is reduced by using low power hardware (sensors, microcontrollers, radio 
chips) for implementing sensor nodes that consume typically significantly less than 100 mW 
(Bischoff et al. 2009). Another means to reduce energy consumption is to operate the network in 

a)            b)  

Figure 1: a) Hardware architecture of a sensor node. b) Physical implementation of a sensor node.  
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switched-off state for a significant amount of time and by switching-on hardware components 
only for the time period required to complete the scheduled tasks.  

Communication is the most energy consuming task. Since the energy consumption increases 
exponentially with the transmission distance (exponent greater than 2), power can be saved by 
operating WSNs as multi-hop networks (Culler & Wei 2004). By establishing communication 
links only to neighbor nodes, thus reducing the transmission distance, the data are sent to the 
data sink through several nodes, which act as relaying stations, receiving and forwarding data 
from adjacent nodes.  

Finally, power can be saved by processing the raw data in the node with the goal to reduce the 
amount of data that need to be transmitted (sending of information instead of raw data), since 
sending 1 bit costs as much energy as executing about 1000 instructions of a low power 
microprocessor (Culler et al. 2004). When monitoring vibration based processes, which produce 
large samples of raw data, this strategy is the most powerful energy saving method and is 
mandatory if a system lifetime of several months should be achieved (Straser & Kiremidjian 
1998; Feltrin et al. 2006; Lynch et al. 2006; Spencer & Nagayama 2006).  

1.3 Sensing 

Several commercial WSN platforms offer specific low power data acquisition boards with 
integrated MEMS sensors and signal conditioning circuits for sensing and acquiring 
temperature, humidity, light intensity, gas pressure, or accelerations. MEMS sensors have 
several advantages compared to conventional sensors: They are small, generally low power, 
highly integrated and, if no high end accuracy and resolution is required, rather inexpensive.  

Several commercial MEMS accelerometers have the characteristics to be suitable for structural 
monitoring applications. MEMS accelerometers with an amplitude range of several g have 
typically a sensitivity of 0.5…1 V/g, can be powered with a low DC voltage of 3 to 5 V, which 
can be provided with standard batteries, and their power consumption is of the order of several 
mW.   

Figure 2a displays a comparison of the performance of a 10 € MEMS (LIS2L06 of ST 
Microelectronics) accelerometer and a 500 € conventional piezoelectric accelerometer (PCB 
M393 A03). The accelerometers were mounted on a shaker that performed a sweep excitation 
between 2 and 50 Hz. The accelerations of the MEMS accelerometer were recorded with a 
sensor node equipped with a 12 bit ADC and those of the piezoelectric accelerometer with a 
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Figure 2: a) Acceleration records obtained with a WSN equipped with a low cost MEMS sensor and a 
conventional data acquisition device with a conventional piezoelectric accelerometer. b) Strain records 
obtained with a WSN and a conventional data acquisition device.  



 

 

- 4 - 

24bit high end data acquisition device. The agreement displayed in Figure 2a is very good. In 
the investigated amplitude range both accelerometers are essentially equivalent. 

A sensor node can be designed to support also conventional sensors. A typical widely used 
sensor in structural monitoring is the electrical strain gage. Figure 2b displays strain records 
obtained with a WSN and a conventional high end data acquisition device. The quality of the 
WSN record is comparable to the record obtained with the conventional system. The average 
difference between the two records has a magnitude of a few percent. Unfortunately, because of 
its low resistance (typically 120 Ω), strain gages are rather power consuming (approx. 40 mW). 

1.4 Data acquisition 

A critical aspect of data acquisition is the analog to digital conversion (ADC) since it has an 
important impact on the resolution of the digital data. Modern wired data acquisition devices are 
typically equipped with 24 bit AD converters. In contrast, mainly for reducing the power 
consumption, WSN platforms are provided with 8 or 12 bit AD converters. This represents a 
quite stringent limitation that requires a careful balance between resolution and amplitude range. 
At low amplitudes the quantization effect of the AD converter usually limits the resolution of 
the whole data acquisition process. This effect manifests itself as noise and is displayed at small 
amplitudes in the record displayed in Figure 2b (0 to 2 seconds). Contrary, at high amplitudes, 
Figure 2b does not display a significant difference between the data obtained by the sensor node 
and the high end data acquisition device. 

A second aspect that has to be considered is time drift due to an inaccurate setting of the 
sampling rate of the WSN platform. The inaccurate setting of the sampling rate is an effect of 
the quantization of time due to the finite frequency of the quartz oscillator (32768 Hz). The 
effective sampling rate of the WSN ADC was tested by monitoring the change of the phase 
difference of a sine signal between the WSN and conventional data acquisition. Figure 3a) 
displays the time drifts computed by two sine signals with 1 and 5 Hz frequency. For both sine 
signals the time drift is very similar and reaches 0.13 seconds after 120 seconds. The relative 
time drift of the WSN data is therefore approximately 1.1‰, which is a very small figure but 
still has appreciable effects on measurements that last for several minutes or have high 
frequency oscillations. Since the time drift is linear, it can be easily corrected by an adequate 
post-processing. 
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Figure 3: a) Time drift of a sensor node. b) Signal corruption by the duty cycle of the radio.  
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1.5 Duty cycle operation 

Duty cycle operation is one of the main mechanisms for reducing power consumption in WSNs. 
The duty cycle describes the fraction of the switched-on time of a hardware component within a 
given period of time. A small duty cycle means that most of the time the hardware component is 
switched-off or in sleep mode. The smaller the duty cycle, the less energy is consumed.  

Since communication is very power consuming, operating the radio with a low duty-cycle is a 
standard strategy to save power. However, because of the high power consumption, each time 
the radio is switched-on, the power supply voltage drops by a small amount (e.g. 0.1 V) due to 
the internal resistance of the power supply. If the sensors are connected to the same circuit that 
powers the WSN platform, which is the standard situation in commercial WSN platforms, the 
periodical voltage drop affects also the power supply of the accelerometer and, as a 
consequence, produces a variation of the output signal, which reduces the quality of the sensor 
signal. Figure 3b displays such a periodical acceleration signal noise. For ambient vibration 
measurements, the noise induced by duty cycle operation is very likely to severely degrade the 
quality of the data.  

The signal corruption can be eliminated by separating the power supply of the sensors from the 
power supply of the WSN platform (Feltrin et al. 2009) or by powering the sensors with a 
voltage regulator circuit that keeps a constant output voltage, e.g. 3V, independently of the cur-
rent supply voltage of the batteries. Furthermore, if a particular sensor requires a supply voltage 
that is greater than the supply voltage provided by the batteries, a voltage regulator boosts the 
battery output voltage to the correct voltage level. The latter solution cancels also the effect of 
the fading of supply voltage due to power consumption that is typical of batteries.  

2 FIELD DEPLOYMENTS 

The performance of wireless sensor networks in structural monitoring were demonstrated in 
several short-term field deployments (Glaser 2004; Kim et al. 2006; Lynch et al. 2006; 
Mechitov et al. 2006; Gangone et al. 2007; Pakzad et al. 2008). However, very little experience 
exists with long-term deployments (several days and more) that feature data intensive 
applications or in-node data processing. Two field deployments with these characteristics are 
presented in this section.  

2.1 Strain monitoring on a railway bridge 

The bridge over the Keräsjokk River is on the Haparanda railway line (single track, non-
electrified) in northern Sweden. It is a single span, simply supported riveted steel truss bridge 
built in 1911 with a length of 31.6 m (Figure 4). The railway tracks lies on wooden sleepers 

  

Figure 4: The  Keräsjokk Railway Bridge in Sweden near Haparanda. 
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directly on the stringers (no ballasting). It was assessed for investigating their fitness for an axle 
load increase from 22.5 to 25.0 tons (Enochsson et al. 2008). The initial assessment showed that 
the fatigue capacity of the web joints in the floor beams would exceed their capacity. This 
bridge was chosen to demonstrate some of the assessment and monitoring methods developed 
within the EU-funded project Sustainable Bridges (www.sustainablebridges.net, Kiviluoma et 
al. 2007). The bridge was crossed by freight trains driven by diesel engines (one or two per 
day).  

2.1.1 Monitoring system 

The wireless sensor network deployed on the bridge consisted of 8 nodes and the root node 
connected to the base station. The location of the strain measurements, all mounted on 
secondary elements, are displayed in Figure 5a. Six strain measurements, labeled as N1 to N6, 
were performed on a longitudinal stringer and two measurements, labeled as N7 and N8, were 
mounted on a floor beam. The strain was measured with soldered strain gages featuring a 
resistance of 120 Ω. Figure 5b shows a deployed sensor node and a strain gage mounted on the 
stringer (positions N4 and N5). The strain gages were connected to the nodes of the wireless 
sensor network by cables, which were plugged into an external connector. The housings of the 
nodes were equipped with four magnetic footings, which allows a simple and fast mounting.  

The sampling rate of data recording was 100 Hz and the record size was 30 seconds. Since one 
data item was stored in 16 bit word the total memory requirement of a complete time history 
was 6 kB or 60 % of the RAM memory of the microcontroller. The radio communication was 
periodically switched on and off to save energy. This duty cycle was synchronized over the 
whole network. 90 % of time the radio was shut down and only 10 % of the time the nodes had 
enabled the energy intensive radio communication.  

All the data recorded by the eight nodes was sent to the base station. To avoid packet collision, a 
sending policy was chosen where each node has a time slot for transmitting its data. The 
wireless monitoring system recorded also temperature, humidity, supply voltage and network 
tree data with a time interval of 2 minutes. 

a)      b)  

Figure 5: a) Location of strain measurements on the bridge. b) Sensor node and strain gage mounted to 
the bridge. 
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The wireless monitoring system was installed over a period of 8 days. Since the strain gauges 
had been installed in advance, the installation was quite fast and took approximately 4 hours. 
The most time consuming work was the connection between strain gauges and the nodes 
(soldering of wires, checking of functionality).  

2.1.2 Triggered measurement 

Since electrical strain gages are quite power consuming, a 120 Ω strain gage consumes approx. 
40 mW, a long-term operation require the implementation of a power saving mechanism. 
Because of the low traffic on the bridge, switching on the strain sensing hardware during train 
crossing would allow a significant power saving. This policy, however, requires a triggering 
mechanism that consumes significantly less power than a strain gage. We opted for equipping 
the sensor nodes with an ultra low power acceleration sensor that was running all the time and 
identified approaching trains through vibrations. We used the accelerometer Bosch Sensortec 
SMB380, a low cost tri-axial sensor for consumer market applications. Two features make this 
sensor particularly useful in this application context: good resolution, power saving capabilities 
with configurable duty cycle and on-chip signal processing capabilities. The power consumption 
is 500 μW at full operation mode and 3 μW at sleep mode. The sensor has a resolution of about 
4 mg at a measurement range of ±2g. The wake-up time is 1ms.  

The sensor has a built-in signal processing capability for analyzing the acquired accelerations. 
This feature was used to generate a hardware interrupt if a specific threshold is violated. The 
interrupt switch-on the strain sensing module (strain gage and signal conditioning) and starts the 
data acquisition. This wake up process lasted 100 ms. Each node was triggered independently. 

0 10 20 30
-50

0

50

100

150

st
ra

in
 [μ
ε ]

time [s]

a)

0 10 20 30
0

20

40

60

80

100

120

st
ra

in
 [μ
ε ]

time [s]

b)

0 20 40 60 80 100 120
0

5

10

15

20

strain cycles [με]

cy
cl

es

 

 
c) raw data

processed data

0 10 20 30

0

50

100

150

200

st
ra

in
 [μ
ε ]

time [s]

d)

Figure 6: a) Raw strain data recorded at node 2 with bias and curve fitting for bias removal. b) Strain after 
removal of switch-on bias. c) Cycle counting using raw and post-processed strain data. d) Strain recorded 
at node 8.  
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2.1.3 Results 

A typical recorded time series of the raw data at the measurement point N2 at the stringer 
(bottom, middle) is displayed on Figure 6a. Each axle of the train is clearly visible. The 
resolution of the strains was found to be approximately 1 με. The accuracy, which could not be 
tested, was estimated to be approximately ±3 με. The achieved accuracy is good enough for 
assessment purposes and in particular for fatigue assessment using cycle counting based 
methods. The time series do not show significant dynamic effects, which is due to the small 
dynamic amplification factor. 

The raw data, however, are biased by a significant time-dependent signal. The bias was 
generated by switching on the strain signal conditioning device shortly before the measurement 
was started. Due to the resistance of the strain gage, the current flow heats the strain gage 
increasing its temperature and consequently its resistance. The signal conditioning (Wheatstone 
bridge) translates this resistance change in a decreasing voltage signal. Since the heat produced 
in the strain gage flows into the surrounding metal and air, the temperature of the strain gage 
increases with increasing time until eventually an equilibrium state is achieved. Figure 6a shows 
that after 30 seconds from switching-on the strain gage board the equilibrium state was not 
completely achieved. Conventional monitoring system do not show this bias because they are 
always operated in the equilibrium state since switching-on occurred long time before the first 
measurement started and the devices are never switched-off between two measurements. 

The bias can be removed by adding a dummy gage in the Wheatstone bridge for achieving 
temperature compensation (2 gage system). Since the dummy gage is not bonded to the 
structure, it has to be designed to provide the same thermal characteristics of the primary gage 
for achieving good temperature compensation. This solution, however, is expensive since the 
temperature compensation must be adapted for each specific application and complicates the 
deployment process. 

An alternative method is to remove the time-dependent bias by post-processing the raw data. 
The goal is to fit the bias with a suitable time-dependent function and to remove it by 
subtracting the fitted function from the raw data. The principle is depicted in Figure 6a. The bias 
is defined selecting the local minima of the raw data. This approach is justified since significant 
nonzero strains occurred only when the stringer is directly subjected to the axle loads. Hence, 
the minima of the unloading phases of the raw data are driven mainly by the non-stationary 
heating process. Independent measurements performed with conventional strain measurement 
devices confirm this approach (Kiviluoma, 2007). A satisfactory fitting of the minima was 
achieved with a simple exponential function that depends on the square root of time. The fitting 
was performed by a least square fit. The fitted function is shown in Figure 6a by the dotted blue 
curve. Figure 6b displays the strains after removal of the bias.  

The effect of bias removal on strain cycle counting is displayed on Figure 6c. The most 
important differences concern the cycles with large strains. The differences are due to the first 
10 seconds of the raw data because in this interval the bias gradient is high and tend to 
overestimate the amplitude of the cycles. Since the amplitude of cycles are defined by the 
difference of two value, the cycle counting histograms of raw and processed data do not differ 
significantly. If the accuracy requirements are not particularly tight, cycle counting using the 
biased raw data may already provide sufficiently good results for fatigue assessment.  

Figure 6d demonstrates that the conservative sending policy with separated time slots did not 
prevent data loss. Only 16 of 30 seconds of the data recorded at node 8 reached the base station. 
A possible reason for the data loss was the electro-magnetic shielding due to the lateral main 
girders. Data loss is avoided by retransmitting the lost packets. This policy, however, consumes 
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more power, shortens the life-time and increases the latency period until the system is ready for 
a new record. Instead of sending the full record, the raw data can be processed in the node to 
extract the cycle counting. For the record displayed in Figure 6a, this data processing reduces 
the communicated data to 0.4% of the original data size and takes 1.2 seconds for completion. 
Such small data sizes can be retransmitted without significantly affecting the power 
consumption and the latency period for the next measurement.  

2.2 Cable stays monitoring 

The long term performance of the WSN monitoring system was studied with a stay cable 
tension monitoring deployment. Cable tension is usually estimated by correlating the measured 
natural frequencies, which are extracted from ambient vibration recordings, with natural 
frequencies predicted with a cable model (Casas 1994; Feltrin et al. 2006). Since the natural 
frequencies are the only information needed to estimate the cable tension, they are extracted by 
processing the raw data in the nodes and transmitted to the network sink, while the raw data can 
be discarded. From the initial amount of data, e.g. thousands of samples, the data to be 
communicated is reduced to several natural frequencies. This approach results in a drastic 
reduction of the power consumption. 

2.2.1 Monitoring system 

The WSN monitoring system has been deployed on a cable-stayed bridge (Stork Bridge) in 
Winterthur. The network consists of 6 nodes (C1 to C6), which are mounted on 6 stay cables, a 
root node (C0), which is located at the northern abutment under the bridge deck, and a relay 
node (C7), which is mounted beside the bridge and has a line of sight to all other nodes. Figure 
7a illustrates the set-up and Figure 7b displays the sensor nodes mounted on stay cables of the 
Stork Bridge. The root node is attached to the base station, an industrial PC, powered from the 
mains power supply. The base station establishes a communication link with a computer in 
Empa’s laboratory over the cell phone network using standard Internet communication proto-
cols. The laboratory computer hosts the data base of the monitoring system and provides the 
remote configuration tools. 

Vibrations are measured with a LIS2L06 MEMS capacitive accelerometer from ST 
Microelectronics. The accelerometer is integrated into an electronic circuit containing a low 
pass filter with a cut-off frequency of 20 Hz and a signal amplifier with an amplification factor 
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    b)  

Figure 7: a) Set-up of the WSN monitoring system. b)  Stay cables of the Stork Bridge with mounted 
sensor nodes. 
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of 50. The power consumption of the accelerometer and signal conditioning is approximately 5 
mW. The ambient vibrations were recorded with a sample rate of 50 Hz for 20.5 seconds and 
contained 1024 samples. A typical time series of ambient vibrations is displayed in Figure 8a.  

In addition to the ambient vibrations, temperature and humidity are periodically measured with 
the single chip Sensirion SHT11 sensor. The sensors are mounted inside the enclosure to 
investigate the time evolution of humidity as well as into an opening of the housing to measure 
the ambient temperature and humidity. Power supply voltage, routing and link quality 
information are also monitored. All data was acquired periodically with a time interval of 5 
minutes. 

2.2.2 Computation of natural frequencies 

Typically, the estimation of natural frequencies via frequency spectrum is performed in three 
steps. First, the Fourier transform of the acquired vibration data is computed with a FFT 
algorithm. The second step computes the frequency spectrum with the real and imaginary of the 
Fourier transform. The third step identifies the peaks of the spectrum that correspond to the 
cable natural frequencies by using a peak detection algorithm.  

Implementing this algorithm on a microcontroller with 10kB RAM is not a straightforward 
exercise since a time series of 1024 16 bit samples takes 2kB of memory. Since the RAM stores 
also the sensor node software, little memory is left for additional memory requirements of the 
data processing algorithm. Fortunately, the FFT algorithm, which represents the most 
demanding data processing step, can be implemented by using essentially only the memory of 
the time series. The intermediate and final results are stored in the same memory, overwriting 
the data from the previous stage. 

Usually, the FFT algorithm is performed in floating point arithmetic. However, the micro-
controller performs the floating point operations very slowly since they have to be emulated 
with integer operations. This overhead results in a greater code size and longer execution time. 
Less memory demanding, much faster and less power consuming is to perform the FFT 
algorithm with integer operations.  

Evidently, an integer FFT implementation may introduce significant errors. A typical error 
source is overflow. By scaling the recorded time series with a suitable factor, however, the 
overflow can be avoided and the approximation error can be maintained within an acceptable 
range. Figure 8b) compares the frequency spectra of the time series displayed in Figure 8a) that 
are computed with a 16 bit integer approximation FFT and with the standard 32 bit floating 
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Figure 8: a) Ambient vibrations recorded on a stay cable. b) Fourier spectra computed with fixed and 
floating point operations.  
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point FFT. As can be observed, the result of the integer approximation FFT matches very well 
with the floating point FFT. The net execution time of the FFT was less than 0.55 seconds. The 
FFT computation with floating point operations took approximately 10 times longer and namely 
5.8 seconds.  

Computing the frequency spectrum (ℓ2 norm) took 0.19 seconds and 8 natural frequencies 
additional 0.21 seconds. Hence, the final result, the natural frequencies, was computed in less 
than 1 second. Compared to the recording time of 20.5 seconds the data processing is very fast. 

Figure 9 shows the time evolutions of the captured natural frequencies of cable C3 and C6. 6 
natural frequencies could be regularly monitored for the cable C3 and 3 natural frequencies for 
the cable C6. Natural frequencies with a magnitude greater than 11 Hz are more difficult to 
detect since the associated vibration modes are scarcely excited. The standard deviation of the 
natural frequency estimations of cable C3 is less than 0.05 Hz and therefore approximately of 
the same magnitude of the frequency resolution of the spectrum, which is 0.05 Hz. A more 
pronounced scattering is displayed by natural frequency estimations of cable C6 that range 
between 0.05 and 0.13 Hz for the first three natural frequencies. This effect is due to the 
shortness of the cable C6 that limits the magnitude of the ambient vibrations. The 1h average of 
the natural frequencies (12 estimations) of the cables C3 differs from reference measurements 
by less than 2%. For cable C6 the difference between the average value and the reference 
measurement is smaller than 4%.  

2.2.3 Stability and reliability 

From the very first day on, the most challenging issue was to achieve system stability. The 
software that integrated data acquisition, data processing, time synchronization, low duty cycle, 
task scheduling etc. into one packet turned out to be very sensitive to many tiny details 
regulating the various activities. Sensor nodes disappeared and spontaneously reappeared after 
some time without any evident reason. When operating the network with TinyOS 
1.x/Boomerang the routing tree was changing continuously. In this highly dynamic situation 
quite often nodes failed to choose a parent node correctly and lost their link to the network.  

The system stability and reliability improved significantly after porting the software to TinyOS 
2.x. This progress is shown in Figure 10a that displays the hourly delivery ratio during 60 days 
of two test periods. The delivery ratio is defined as the percentage of natural frequencies 
received by the remote control unit with respect to the theoretical maximum.  
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Figure 9: a) Natural frequencies of cable C3. b) Natural frequencies of cable C6.  
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The period 1, April-May 2007, displayed rarely a delivery ratio higher than 80% and several 
total break downs of the whole network. Total failures of sensor nodes to deliver data occurred 
very often. In the second period, January-February 2010, this pattern was not observed. The 
delivery ratio was 100% for most of the time and was only briefly interrupted with partial break 
downs that did not go below 80%. The mean delivery ratio of the two test periods was 53% and 
99.5%, respectively.  

2.2.4 Energy Consumption 

The average power consumption of the WSN node is determined by the time needed for sensing 
and data processing, the amount of data to be transmitted, the duty cycle period, the power 
management of the hardware and the network topology, since it determines the number of hops 
for reaching the data sink. Sensors and signal conditioning boards were switched-off after 
completion of the data acquisition. Furthermore, since the nodes were not equipped with a 
voltage regulator, the radio was switched-on during data acquisition in order to avoid signal 
corruption by the duty cycle. Figure 10b shows the battery voltage drop of the sensors node C1 
and C7. Due to ambient temperature variations, the observed voltage curves are not decreasing 
monotonically but are oscillating significantly. The voltage drop of C1 was approximately 0.15 
V in 60 days. Since a sensor node can be operated correctly provided the supply voltage is 
higher than 2.4 V, a lifetime estimation based on the observed volt-age drop predicts a battery 
lifetime of approximately 240 days. The relay node C7, which was not equipped with sensors, 
had half the voltage drop of sensor node C1 and thus twice the life-time of node C1. This figure 
indicates that roughly half of the energy of a node is consumed by data acquisition, data 
processing and the extra radio-on time during data acquisition. 

3 CONCLUSIONS 

This 3 year of field test experience demonstrates that medium and long term data intensive 
monitoring of civil structures with wireless networks is feasible and that the produced 
information complies with the quality requirements in civil engineering. In the beginning, 
operating the wireless network reliably over a period of months turned out to be non-trivial task. 
The problems relied basically on balancing the requirements of a data intensive application with 
the requirements of minimizing power consumption for achieving a sufficiently long battery 
lifetime. Data reduction, a powerful method to save power and therefore a key factor for 
achieving the targeted lifetime, destabilized seriously the WSN by disturbing the basic 
operations like time communication and routing.  
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Figure 10: a) Delivery ratio of two test periods. b) Supply voltage evolution of nodes C1 and C7.  
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Nevertheless, with many hard- or software improvements, the problems could be substantially 
solved. The availability of the most recent test phase was better than 99%. Considering that the 
data loss of the most recent test phase was due to malfunctioning of the link between the root 
node and the base station, the availability figure is very encouraging. Despite the severe hard- 
and software limitations, relatively complex in-node data processing could be performed and the 
accuracy of the generated information was better than 5%. This figure is very close to comply 
with the quality requirements in civil engineering, which usually do not require high precision 
information. The simultaneous application of several power saving mechanisms, in particular 
in-node data processing, allows to easily achieve node lifetimes of several months. Further 
significant improvements are still possible, since the duty cycle of the radio was not optimized. 
The hardware limitations, however, imposes a tight specialization to the monitoring task. This 
implies a detailed analysis and specification of the monitoring goals. 

Although not all aspects were investigated in depth, the results obtained by the field 
deployments demonstrate that there are no fundamental obstacles preventing the application of 
long term monitoring systems based on wireless sensor networks to civil structures. This 
technology is very close to be mature for practical application. In the near future, progress in 
low power hardware will increase the computational resources without increasing or even 
decreasing the current power consumption. This progress will allow to perform more complex 
monitoring tasks and in-node data processing with less compulsion to specialization. 
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